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Abstract: This study explores the use of a support vector machine (SVM) as the observation operator
within a passive microwave brightness temperature data assimilation framework (herein SVM-DA)
to enhance the characterization of snow water equivalent (SWE) over High Mountain Asia (HMA).
A series of synthetic twin experiments were conducted with the NASA Land Information System
(LIS) at a number of locations across HMA. Overall, the SVM-DA framework is effective at improving
SWE estimates (~70% reduction in RMSE relative to the Open Loop) for SWE depths less than
200 mm during dry snowpack conditions. The SVM-DA framework also improves SWE estimates
in deep, wet snow (~45% reduction in RMSE) when snow liquid water is well estimated by the
land surface model, but can lead to model degradation when snow liquid water estimates diverge
from values used during SVM training. In particular, two key challenges of using the SVM-DA
framework were observed over deep, wet snowpacks. First, variations in snow liquid water content
dominate the brightness temperature spectral difference (∆TB) signal associated with emission from
a wet snowpack, which can lead to abrupt changes in SWE during the analysis update. Second,
the ensemble of SVM-based predictions can collapse (i.e., yield a near-zero standard deviation across
the ensemble) when prior estimates of snow are outside the range of snow inputs used during the
SVM training procedure. Such a scenario can lead to the presence of spurious error correlations
between SWE and ∆TB, and as a consequence, can result in degraded SWE estimates from the analysis
update. These degraded analysis updates can be largely mitigated by applying rule-based approaches.
For example, restricting the SWE update when the standard deviation of the predicted ∆TB is greater
than 0.05 K helps prevent the occurrence of filter divergence. Similarly, adding a thin layer (i.e., 5 mm)
of SWE when the synthetic ∆TB is larger than 5 K can improve SVM-DA performance in the presence
of a precipitation dry bias. The study demonstrates that a carefully constructed SVM-DA framework
cognizant of the inherent limitations of passive microwave-based SWE estimation holds promise for
snow mass data assimilation.
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1. Introduction

High Mountain Asia (HMA) is a vast, high elevation mid-latitude region comprising the world’s
highest mountains. HMA snow and glaciers (that result from the accumulation of snow) are the earth’s
largest freshwater reservoirs outside the polar regions, and their meltwater is the main water source
for more than a billion people that live downstream, especially in the Indus river basin [1,2]. While an
increase (thickening) in glacier mass has been observed in the West Kunlun and Karakoram regions
(the so-called ‘Karakoram anomaly’; [3]), in recent decades most of HMA has been progressively losing
glaciers [4–7], which could negatively impact regional water supply and native ecosystems. In this
regard, accurate characterization of the spatiotemporal variability of snow and ice across the HMA
region is an urgent issue for water resource management under global warming.

Ground-based monitoring of land surface snow cover and glaciers is quite limited in this
region because of the complex topography and extreme climatic conditions. Satellite remote sensing
and land surface modeling are alternative approaches, but they also have their own limitations.
For example, remote sensing observations are limited by errors stemming from instrument noise
and retrieval algorithms, whereas land surface models (LSMs) have large uncertainties attributed to
model parameterization, initial conditions, and meteorological forcings (i.e., boundary conditions).
Fortunately, data assimilation (DA) is an attractive alternative for generating high-quality estimates as
it merges satellite-derived observations with model predictions, while explicitly accounting for their
relative uncertainties.

Given the fact that passive microwave (PMW) brightness temperature (TB) is sensitive to snow
volume scattering, and thus, provides useful information on snow mass variations, TB observations
can be directly assimilated into an LSM to improve snow estimates. TB assimilation in the context of
snow was first applied by Durand et al. [8] as part of a set of synthetic experiments. Durand et al. [9]
demonstrated from a point-scale study that TB assimilation outperforms traditional TB-based retrieval
algorithms (e.g., [10]) in estimating snow depth. Many follow-on studies (e.g., [11–15]) showed similarly
encouraging results. More recently, Kwon et al. [16,17] employed TB assimilation for continental-scale
snow storage estimates and Larue et al. [18] and Kim et al. [19] further improved the method. The focus
of this current study was to characterize snow water equivalent (SWE) in the HMA region using TB

assimilation methods.
To assimilate TB observations, the DA framework requires a forward observation operator that

maps the relevant LSM state variables (e.g., SWE) into the corresponding observation space (i.e., TB).
Whereas the above-mentioned previous TB assimilation studies used a microwave radiative transfer
model (RTM) as the observation operator, we use a machine learning algorithm. Forman et al. [20]
first employed an artificial neural network (ANN) to map geophysical (model) states into PMW TB

space to explore the feasibility of using machine learning algorithms as an observation operator within
a DA framework. They showed that an ANN could be used to estimate TB at multiple frequencies
and polarizations over snow-covered land using LSM snow outputs as inputs to the ANN. Forman
and Reichle [21] additionally explored the use of another machine learning technique, i.e., support
vector machine (SVM) regression, and suggested that the SVM is a more effective alternative to ANNs
for snow TB assimilation purposes due to the increased sensitivity of SVMs to snow mass relative to
ANNs. Through sensitivity experiments, Xue and Forman [22] supported the findings of Forman and
Reichle [21] with respect to the use of SVMs within a DA framework. More recently, Xue et al. [23]
conducted TB spectral difference assimilation over snow-covered areas in North America using a
well-trained SVM and presented promising initial results. Building on these prior efforts, we adopted
the use of SVM regression algorithm in this study, but applying it to a different land surface model using
a different set of boundary conditions in a different part of the globe where the accurate estimation of
snow is very challenging.

Compared to RTMs, the use of SVMs in the data assimilation environment is computationally
more efficient. As SVMs are pretrained prior to the assimilation process, they essentially act as an
emulator to the computationally more expensive RTMs [16]. RTM-based DA approaches typically
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demand high-fidelity snow models to meet all of the input requirements (e.g., [24]). The SVM training
process can also help mitigate the negative effects of LSM’s inaccurate representations of snow layers,
snow grain size, and ice lens (or depth hoar) within the snowpack by providing a more bulk, mixed-pixel
response [21]. SVMs generally provide a more flexible environment for characterizing snow variability
over a large region of space, such as HMA, by assimilating TB at multiple frequencies and multiple
polarizations. On the other hand, the “black-box” nature of SVMs may have limitations for snow TB

data assimilation, which are discussed in this paper.
The TB data assimilation framework used in this study includes the National Aeronautics

and Space Administration (NASA) Land Information System (LIS; [25–27]) in conjunction with a
well-trained SVM (herein SVM-DA framework for simplicity). The Noah Land Surface Model with
multi-parameterization options (Noah-MP version 3.6; [28,29]) was used as the prior model for
simulating snow. In view of the lack of available measurements for validation in the study area,
a synthetic twin experiment (e.g., [30–32]) was performed to assess the potential of our SVM-DA
framework for enhancing snow estimates over the HMA region. Note that the focus of this article is
on terrestrial snow only. We consider the estimation of snow on glaciers to be beyond the scope of
this paper.

Research questions addressed in this study include: (1) Is the SVM-DA framework effective in
improving snow mass estimates across the HMA region? (2) What limitations does the SVM-DA
framework possess? (3) Can these limitations be avoided through the recognition and appropriate
handling of instances where the SVM forward operator is suboptimal?

2. Methodology

2.1. SVM-DA Framework and Synthetic Twin Experiment

The SVM-DA framework leveraged NASA LIS as the software “wrapper” around both the forward
(prognostic) land surface model and the observation operator (Figure 1), which in this case consisted
of well-trained SVMs. LIS is a comprehensive system for land surface modeling and data assimilation,
and features a flexible and extensible design using object-oriented programming. In LIS, various
advanced LSMs (LIS-LSM), ground measurements, satellite products, sequential and nonsequential DA
algorithms (LIS-DA), and tools for high-performance computing and data management are integrated
to generate estimates of land surface states and fluxes (see Kumar et al. [33] for more details).
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Among the LSMs in LIS, we used Noah-MP v3.6 as the forward (prognostic) LSM to simulate
snow-related land surface processes, including the accumulation and ablation of terrestrial snow.
In the SVM-DA framework, a well-trained SVM was used as the observation operator to predict TB

from prior model estimates of snow. The well-trained SVM was derived from statistical learning
theory and uses support vector regression [34–36] via the integration of the LIBSVM library [36]
into the LIS framework. As a data-driven model, the SVM can reproduce nonlinear processes [35],
such as relationships between snow’s physical properties and electromagnetic characteristics of snow
(e.g., [21]). Once trained, the approximating function used in SVM regression is given as:

f (y) =
m∑

i=1

(
α∗i − αi

)
k(xi, y) + δ (1)

where y is the [1 × n] input vector from Noah-MP simulations at a given location (i.e., model pixel);
n is the number of snow-related variables; m is the total number of training targets (i.e., number of TB

measurements for a given location at different times); α and α* are the dual Lagrangian multipliers;
k(xi,y) is a Gaussian radial basis kernel function; x is the [m× n] training matrix; and δ is a bias coefficient.

The SVM-DA framework is composed of two phases: (1) SVM training, and (2) SVM prediction
during the assimilation phase. As we conducted a synthetic twin experiment, an additional procedure
of generating synthetic observations was required as part of the experiment (see Figure 1). During phase
1, Noah-MP was forced by the NASA Modern-Era Retrospective analysis for Research and Applications,
version 2 (MERRA-2; [37]) atmospheric reanalysis that yielded estimates of snow-related model states
(e.g., SWE and snow depth), which served as the synthetic snow truth for assessing DA performance.
The SVM was trained using nine years (1 September 2002 to 1 September 2011) of model simulations
in conjunction with PMW TB observations from the Advanced Microwave Scanning Radiometer for
Earth Observing System (AMSR-E) (see Section 2.3.2). The trained SVM was then used to produce
the synthetic ∆TB truth as a function of the snow states generated by the “true” Noah-MP simulation.
Finally, synthetic ∆TB observations were generated by adding random errors, i.e., white Gaussian
noise with zero-mean and standard deviation of 3 K [23], to the “true” synthetic ∆TB. The errors were
assumed to be temporally and horizontally uncorrelated.

During phase 2, a prior ensemble (with 20 different replicates) of snow-related model states
were estimated by Noah-MP driven by stochastic MERRA-2 forcing. However, the precipitation in
MERRA-2 was replaced with precipitation estimates from the Tropical Rainfall Measuring Mission
(TRMM) multisatellite precipitation analysis (TMPA; [38]) so that the differences between the two
different sets of precipitation estimates (i.e., MERRA-2 precipitation and TRMM precipitation) can
be representative of the true errors that could be encountered by an operational assimilation system.
The well-trained SVM, generated during phase 1, was used to predict an ensemble of ∆TB from the
ensemble of prior estimates. Using the ensemble of predicted ∆TB along with the synthetic ∆TB

observations generated during phase 1, LIS-DA updated the ensemble of prior (geophysical) estimates
with an ensemble Kalman filter (EnKF; [39,40]) algorithm. The updated (posterior) ensemble of snow
states was then used as the initial conditions for subsequent model forecasts.

2.2. Data Sets

The AMSR-E microwave TB data used during the SVM training were obtained from the
MEaSUREs (NASA Making Earth System Data Records for Use in Research Environments) Calibrated
Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature Earth System
Data Record (https://nsidc.org/data/nsidc-0630/versions/1; [41]). The highest resolution of TB data at
10.65, 18.7, and 36.5 GHz were upscaled as an arithmetic average to the LSM resolution (i.e., 0.25◦ ×
0.25◦ equidistant cylindrical grid) for computational simplicity and then spectral differences (∆TB)
were calculated from the upscaled TB data.

https://nsidc.org/data/nsidc-0630/versions/1;
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Meteorological boundary conditions used in this study include the MERRA-2 atmospheric
reanalysis [37] and TRMM precipitation data [38]. MERRA-2 has been updated from its predecessor,
MERRA, and is the latest atmospheric reanalysis product produced by the NASA Global Modeling and
Assimilation Office (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2). MERRA-2 has been available
from 1980 to the present, and provides global coverage at a spatial resolution of 0.5◦ × 0.625◦. The TRMM
precipitation (available from https://pmm.nasa.gov/data-access/downloads/trmm) is provided at a
spatial resolution of 0.25◦ × 0.25◦. It spatially covers 50◦S–50◦N/180◦W–180◦E, and temporally spans
from 2001 to 2016. The daily product of the TRMM precipitation (3B42, version 7) was used during the
data assimilation experiments.

Yoon et al. [42] conducted an inter-comparison of 10 different precipitation datasets, including
MERRA-2 and TRMM precipitation data, and confirmed that the existing precipitation datasets have
large uncertainties and variability across HMA. All precipitation datasets agreed with respect to
spatial patterns, but their magnitudes and temporal trends were significantly different. Yoon et al. [42]
suggested the use of the Climate Hazards Group InfraRed Precipitation with Station data-version 2
(CHIRPS-2; [43]) precipitation in conjunction with other forcing fields from the European Centre for
Medium-Range Weather Forecasts (ECMWF; [44]) to drive land surface models over HMA. Meanwhile,
Ahmad et al. [45] showed that signs of the sensitivity of SVM-based ∆TB predictions to both the
forcings (i.e., MERRA-2 and ECMWF + CHIRPS-2) were comparable, and higher sensitivity values
were obtained for MERRA-2. Furthermore, since the current study aimed to demonstrate the feasibility
of the SVM-DA framework to improve SWE estimates for the highly uncertain environment of HMA,
we concluded that both the MERRA-2 (for the synthetic truth) and TRMM precipitation data (for
open-loop (OL) and data assimilation (DA)) could be used in this synthetic study as the differences in
precipitation between the two different sets are representative of the real-world errors that could be
encountered by an operational modeling and assimilation system.

Important surface input data sets for Noah-MP include elevation, land cover types, and soil texture.
Elevation estimates were obtained from the Shuttle Radar Topography Mission (SRTM) elevation
data [46]. For land cover types, we used the Terra Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor-based International Geosphere-Biosphere Programme (IGBP) land classification
map [47]. Soil texture data from the International Soil Reference and Information Centre [48] were
used as soil inputs to Noah-MP.

2.3. Experimental Setup

2.3.1. Land Surface Model

As noted above, the Noah-MP LSM was used to simulate snow conditions in this study. Noah-MP
was improved from its baseline model (i.e., the Noah LSM) by augmenting representations of
hydrological processes and land–atmosphere interactions, and by adding multiple parameterization
options [28,29]. In Noah-MP, the snowpack is represented by up to three snow layers, depending on
the total snow depth. The model simulates snowmelt–refreeze cycles and snow compaction processes
such as destructive metamorphism, melt metamorphism, and compaction by snow load or overburden.

Noah-MP initial conditions were obtained from the following two-step process. First, the model
was run from 1 January 1980 to 1 May 2002 using a single replicate to consider multiyear snow
accumulation, soil moisture dynamics, and shallow groundwater dynamics in high elevation regions
while minimizing the computational demand. Second, 20 ensemble members of model initial conditions
were generated by running the model from 1 May 2002 to 1 September 2002 with stochastic perturbations
of the MERRA-2 meteorological forcing fields and TRMM precipitation data (see Section 2.3.4 for
perturbations) used as a boundary condition to Noah-MP. Using the 20-member ensemble to specify
the initial conditions, Noah-MP was then run at a spatial resolution of 0.25◦ (equidistant cylindrical
projection) from 1 September 2002 to 1 September 2011 with (DA cases) and without assimilation
(open-loop (OL) case) of synthetic ∆TB observations.

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2
https://pmm.nasa.gov/data-access/downloads/trmm
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The Noah-MP model integration time step was set to 15 min and daily averaged snow (geophysical)
outputs were obtained. The Noah-MP options of physical parameterization schemes used in our
experiment are listed in Table 1. More options and detailed descriptions can be found in Niu et al. [28].

Table 1. Noah Land Surface Model with multiparameterization (Noah-MP) v3.6 options of physical
parameterization schemes used in this study. (See Niu et al. [28] for additional details).

Process Selected Option References

Vegetation Dynamic -
Canopy stomatal resistance Ball–Berry [49]

Soil moisture factor for stomatal resistance Noah type using soil moisture [50]
Runoff and groundwater SIMGM a [51]

Surface layer drag coefficient M-O b [52]
Supercooled liquid water (or ice fraction) in frozen soil NY06 [53]

Frozen soil permeability NY06 [53]
Radiation transfer Modified two-stream [54,55]

Ground snow surface albedo BATS c [56]
Partitioning precipitation into rainfall and snowfall Jordan91 [57]

Lower boundary condition of soil temperature Original Noah scheme -
Snow and soil temperature time scheme (only the first layer) Semi-implicit -

a TOPMODEL-based runoff scheme with a simple groundwater scheme; b general Monin–Obukhov similarity
theory; c biosphere–atmosphere transfer scheme.

2.3.2. SVM Training

We adopted the SVM training procedure as presented in Forman et al. [20] and Forman and
Reichle [21]. The training was conducted over a nine-year period from 1 September 2002 to 1 September
2011. A split-sample training procedure was adopted, such that observations for a given training
period were excluded from the analysis. A fortnightly (two-week) training period was selected to
capture seasonal variability in snow processes while ensuring an adequate training sample size (on the
order of a thousand) at most locations.

The selected training targets (i.e., SVM outputs) included spectral differences between the 10.65
and 36.5 GHz channels and between the 18.7 and 36.5 GHz channels at both horizontal (H) and vertical
(V) polarization. These three particular frequencies were chosen based on their reported sensitivity to
snow associated with preferential scattering (volume) at higher frequency [10,58–61]. Kwon et al. [16]
suggested that the 23.8 GHz channel can add value to the DA performance when it is additionally
assimilated. However, due to the high sensitivity of the 23.8 GHz channel to atmospheric water
vapor [62,63], it requires explicit estimation of atmospheric effects on TB [17], which were not modeled
in our SVM-DA framework, and hence, the 23.8 GHz channel was not used here. In addition, in order
to minimize error resulting from wet snow effects [64], only nighttime AMSR-E measurements were
used for training.

Note that atmospheric and vegetation corrections to AMSR-E TB data were not conducted in
this study. Xue and Forman [65] showed that the overall atmospheric contribution to the spaceborne
TB data was approximately 1 to 3 K. Due to the fact that the snow-covered grid cells in HMA are
mostly located in high elevation regions (Figure 2a), the atmospheric contribution over HMA may be
much smaller due to the relatively dry and thin atmosphere found at higher elevations [66–68], and
thus was assumed to be negligible. In terms of overlying vegetation, the HMA study domain largely
consists of non-forested land-cover types such as barren (or sparsely vegetated), shrublands, croplands,
and grasslands (Figure 2b). The forest cover fraction in most of the study domain is small, while
most of the snow-covered areas are outside densely forested areas (Figure 2c). In this regard, both
atmospheric and vegetation corrections were considered of secondary importance to the performance
of the SVM-DA framework in the HMA region.
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Figure 2. High Mountain Asia (HMA) study domain with experimental grid points (i.e., Grids #1 to
#4): (a) elevation, (b) dominant land-cover types, (c) forest cover fraction, (d) snow class, (e) multiyear
mean winter (December, January, and February) precipitation rate, and (f) wet snow days. Grids #5 and
#6 are glaciated regions presented in Figure 4e,f respectively. Digital elevation estimates derived from
the Shuttle Radar Topography Mission (SRTM) elevation data [46]. The Terra Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor-based International Geosphere-Biosphere Program (IGBP)
land classification map [47] was used for the dominant land-cover types and forest cover fraction.
The snow classification was based on Sturm et al. [69]. The multiyear mean winter precipitation rate
was estimated from MERRA-2 precipitation, and the percentage of wet snow days were obtained from
the synthetic truth simulation.

The Noah-MP (geophysical) state variables selected as input (i.e., control) variables to the SVM
included SWE, snow density, snow liquid water, and snow (top layer) temperature. The particular
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selection of these four input (control) variables to SVM-derived PMW TB was based, in part, on the
sensitivity analysis conducted by Ahmad et al. [45]. Using the same land surface model (Noah-MP)
and boundary conditions (MERRA-2) as in this study, Ahmad et al. [45] analyzed the sensitivity
of SVM-based ∆TB predictions over the HMA region to four different Noah-MP state variables.
Although the magnitude and sign of the estimated normalized sensitivity coefficient (NSC [unitless])
varied depending on location in time and space, the signs of the NSCs, in general, adhered to the
known first-order physics. That is, the SVM-predicted ∆TB was negatively sensitive to top-layer
snow temperature and snow liquid water (i.e., ∆TB decreased as snow temperature or snow liquid
water content increased). Conversely, ∆TB generally increased with increased SWE or snow density.
The largest absolute values of the NSC for ∆TB between the 18.7 and 36.5 GHz channels estimated
for a specific location and averaged over snow accumulation or ablation season were about 1.0 (for
SWE), 1.0 (for snow liquid water), 3.9 (for top layer snow temperature), and 1.5 (for snow density).
The relatively low NSC of SWE is consistent with the results of Kwon et al. [16], who used radiative
transfer models. This implies that the assimilation of PMW TB or ∆TB does not ensure improvement in
SWE estimates for all surface conditions, and thus requires a nuanced approach.

The daily snow cover product from the National Oceanic and Atmospheric Administration’s
National Environmental Satellite Data and Information Service (NOAA/NESDIS) Interactive
Multisensor Snow and Ice Mapping System (IMS; [70,71]) was used as a reference for the presence
of snow. That is, AMSR-E TB observations and Noah-MP outputs were excluded from the training
set to the SVM if the estimated snow cover did not coincide with the IMS snow cover information.
This procedure was expected to reduce erroneous inputs [20] and thus increase the accuracy of the
SVM. The SVM was trained on a 0.25◦ equidistant cylindrical grid, the same spatial resolution and
map projection used for Noah-MP, and the optimal nonlinear SVM parameters were determined for
each training target, for each fortnight, and for each 0.25◦ grid cell in the study area.

The performance of this training approach in reproducing the observed ∆TB over snow-covered
areas in the HMA region has been demonstrated in Ahmad et al. [45]. Overall, the trained SVM well
reproduced AMSR-E ∆TB observations not used during the SVM training. Results showed a bias
between −0.5 K and 0.5 K and a root mean squared error (RMSE) less than 10 K (see Figure 3 in [45]).
The seasonal variability in AMSR-E ∆TB observations was also appropriately captured by the trained
SVM (see Figure 4 in [45]). Please refer to Ahmad et al. [45] for more details about the performance of
the SVM over HMA.

2.3.3. Precipitation Bias Correction

As previously mentioned, instead of using MERRA-2 precipitation, as was the case for the nominal
(truth) simulation, TRMM precipitation was used for both the OL and DA runs within the synthetic twin
experiments. To reduce the significant climatological difference in precipitation between MERRA-2
and TRMM, a simple bias correction on the TRMM precipitation was first conducted using a bias
correction factor computed as:

α =
MERRA2

TRMM
(2)

whereα is the bias correction factor for TRMM precipitation, MERRA2 and TRMM are the time-averaged
(from 1 September 2002 to 1 September 2011) and domain-averaged (across the entire HMA region)
precipitation from MERRA-2 and TRMM, respectively. The bias correction ensures that, in aggregate,
the total amount of TRMM precipitation over the study period and domain is identical to that of
MERRA-2. However, considerable differences still exist at individual locations in space and time,
such that these differences are representative of the “real-world” errors in the boundary conditions
encountered by the prognostic Noah-MP model. In other words, even though the total amount of
precipitation is the same between the true simulation and the OL/DA ensembles, the amount of SWE
could be significantly different at any individual location due to the nonlinear hydrologic response of
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precipitation forcing on snowpack estimation. The differences in SWE between the synthetic truth and
OL runs were expected to be mitigated by the assimilation of the synthetic ∆TB observations.

2.3.4. Data Assimilation

The ensemble Kalman filter (EnKF; [39,40]) was used to assimilate the synthetic ∆TB observations.
In the EnKF, model errors are dynamically represented by an ensemble of model integrations, which,
in this study, was derived by perturbing meteorological forcings. As a compromise between the
performance and computational efficiency of the SVM-DA framework, an ensemble size of 20 was
used for both the OL and DA cases. The 20 ensemble members were constructed by perturbing
meteorological forcing inputs, which represent the uncertainty in the boundary conditions (see Table 2).
Note that the precipitation error was considered the key source of uncertainty in this paper. Due to the
fact that the same Noah-MP model (with the same configurations) was used for the synthetic truth, OL,
and DA cases during the synthetic twin experiment, errors stemming from the model structure (physics
and parameters) were neglected, and, hence, no perturbation was applied to the model prognostic
state variables. It is also important to note that the analysis update was disabled when one or more of
the ensemble members in a grid cell simulated snow-free conditions.

Table 2. Perturbation parameters applied to meteorological forcing fields for both the OL and DA cases
(M: multiplicative; A: additive; AR(1): first-order autoregressive temporal correlation).

Perturbed Meteorological Forcing Type Std Dev AR(1) Cross-Correlations with Perturbations in

P SW LW Tair

Precipitation (P) M 0.5 1 day − −0.8 0.5 −0.1
Shortwave radiation (SW) M 0.3 1 day −0.8 – −0.5 0.3
Longwave radiation (LW) A 50 W m−2 1 day 0.5 −0.5 – 0.6

Near surface air temperature (Tair) A 1 K 1 day −0.1 0.3 0.6 –

The perturbed meteorological forcing fields (i.e., boundary conditions) include precipitation,
incident shortwave and longwave radiation, and near-surface air temperature, which were selected
based on their first-order control on snow processes. The perturbation parameters summarized in Table 2
were determined based on settings used in previous DA studies (e.g., [33,72–76]). The precipitation
(P) and downward shortwave (SW) radiation forcing were perturbed using normally distributed,
additive random fields (with zero-mean). The downward longwave (LW) radiation and near-surface
air temperature (Tair) forcing were perturbed by log-normally distributed, multiplicative random fields
(with mean 1). For all perturbation fields, temporal correlations were considered using a first-order
autoregressive model (AR(1)). Cross correlations between the perturbation fields were also imposed,
as indicated in Table 2, for realistic and balanced (physically consistent) perturbations.

The synthetic observations of ∆TB between the 10.65 and 36.5 GHz (V and H) channels and
between the 18.7 and 36.5 GHz (V and H) channels were simultaneously assimilated in the SVM-DA
framework. The standard deviation of the ∆TB error was assumed to be 3 K based on Kwon et al. [16],
Xue et al. [23], and Durand and Margulis [77]. Note that only SWE was directly updated during the
assimilation and that other snow states such as snow ice content, snow liquid water content, and snow
depth were adjusted based on the amount of SWE update to maintain physical consistency between
snow properties in the prior and posterior ensembles from Noah-MP.

2.4. Study Area

HMA presents an interesting study domain for this study. As previously mentioned, HMA is an
important area with respect to climate change and freshwater resources. HMA is also characterized by
its high biodiversity, highly variable precipitation, and high vulnerability to climate change and natural
disasters such as floods and avalanches [78]. Therefore, accurate characterization of the spatiotemporal
variability of snow across the HMA region is valuable to regional communities and ecosystems. Second,
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HMA is also a data-sparse area where ground-based measurements are quite limited, owing to the
complex topography, resource availability, and extreme climatic conditions. In this regard, land surface
modeling, satellite remote sensing, and data assimilation are the most viable alternatives for estimating
SWE in this region. There may be limitations in the use of remote sensing observations to help constrain
LSM predictions, and this paper discusses some of the advantages and disadvantages with respect to
the use of PMW TB.

The experiments were first conducted at four specific locations in HMA (Figure 2a) in order to
explore a small suite of different elevation and land cover characteristic combinations. Geographical
characteristics of the experimental grid cells are summarized in Table 3. Based on analysis of results
for these experimental grid cells, we later expanded the study area to the entirety of the HMA domain
spanning from 20.5◦N to 41.0◦N and from 66.5◦E to 101.0◦E (Figure 2).

Maps of elevation, dominant land-cover type, forest cover fraction, snow class, multiyear mean
winter (December, January, and February) precipitation rate, and the percentage of wet snow days in
the study domain are presented in Figure 2. Figure 2b derived from the Terra Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor-based International Geosphere-Biosphere Program (IGBP)
land classification map [47] shows that about 86.8% of the HMA domain is dominated by non-forested
land-cover types such as barren or sparsely vegetated (26.5%), croplands (26.0%), shrublands (21.3%),
and grasslands (13.0%). Forest land-cover accounts for only 11.8% of the study area (Figure 2b),
and dense forests are mostly located in the southeastern part of the region (Figure 2c). The snow
classification map (Figure 2d), based on Sturm et al. [69], shows that six snow classes, i.e., ephemeral
(60.29%), prairie (36.16%), alpine (1.96%), maritime (0.87%), tundra (0.70%), and taiga (0.02%) are found
within the study area. Higher elevation regions (i.e., 4000 m or above) are characterized by the prairie
snow class, barren (or sparsely vegetated), shrublands, and grasslands, while lower elevation regions
are characterized by the ephemeral snow class, croplands, and forests. High winter (December, January,
and February) precipitation rates were mostly seen in the northwestern part of the study domain
(Figure 2e), where the significant analysis update of SWE by assimilating the synthetic ∆TB data were
observed (see Section 3.3). In the synthetic truth simulation, snow-covered grid cells experienced wet
snow conditions for, on average, about 4.1% of the simulation period (Figure 2f), which may lead to
reduced sensitivity of SVM-based ∆TB estimates to SWE, and thus, degradations of the performance of
the SVM-DA framework in estimating SWE (see Section 3.2).

Table 3. Geographical characteristics of the four experimental grid cells.

Grid
ID Latitude Longitude Elevation a (m) Dominant

Land-Cover Type b
Forest

Fraction b (%)
Glacier

Fraction c (%)

1 31.125◦N 80.375◦E 4659 Open shrublands 0 0
2 31.875◦N 77.375◦E 2986 Mixed forests 54.4 0.96

3 35.875◦N 71.125◦E 4528 Barren or sparsely
vegetated 0.2 10.6

4 37.125◦N 71.875◦E 4053 Open shrublands 0 0
a From Shuttle Radar Topography Mission (SRTM) elevation data [46]; b from Terra Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor-based International Geosphere-Biosphere Program (IGBP) land classification
map [47]; c from Global Land Ice Measurements from Space (GLIMS) glacier database [79].

3. Results and Discussion

3.1. Performance of the SVM-DA Framework

Figure 3 shows the performance of the SVM-DA framework at four selected grid cells (see Table 3).
Assimilation of synthetic ∆TB observations into Noah-MP considerably improved SWE estimates for
Grids #1 and #2 (approximately 70% and 45% reduction in root mean square error (RMSE), respectively,
relative to the OL), whereas degradations were observed for Grids #3 and #4 (approximately 39% and
10% increase in RMSE, respectively, relative to the OL).
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There are, in general, three potential sources for DA degradation: (1) high frequency TB signal
saturation in the presence of deep snow, (2) mixed signal response in the presence of glaciers,
and (3) mixed signal response in the presence of forest cover. TB signal saturation in deep snow is a
well-known issue that hinders SWE estimation based on PMW TB observations. When ∆TB = 10.65
− 36.5 GHz or ∆TB = 18.7 − 36.5 GHz are used to estimate terrestrial SWE, it is assumed that ∆TB

is positively correlated with SWE because TB at 36.5 GHz, in general, decreases as SWE increases
(i.e., snowpack deepens) due to volume scattering while TB at 10.65 GHz (or 18.7 GHz) is less sensitive
to increasing snow depth as compared to 36.5 GHz. However, TB at 36.5 GHz can begin to increase
after SWE reaches a threshold value; this is due to the transition from snow volume scattering to
emission at 36.5 GHz [60,80]. SWE threshold values for the slope reversal in the correlations between
SWE and ∆TB at 36.5 GHz vary depending on local snow conditions such as snow wetness, snow
grain size, snow grain shape, and the presence of internal ice layers [81]. The documented range of
the SWE threshold value is from about 100 to 200 mm (e.g., [58,60,81–83]). Correlations between the
Noah-MP simulated SWE and SVM-based ∆TB,18V–36V estimates were plotted in Figure 4, in which the
SWE threshold value was assumed to be 200 mm, which is the upper limit of the range of reported
values in the peer-reviewed literature. As shown in Figure 4a,c the slope reversal phenomenon was
also observed in our modeling results.
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Figure 3. Time series of snow water equivalent (SWE) from the synthetic truth (black dots), open loop
(OL; blue lines), and data assimilation (DA; red lines) for the four different experimental locations:
(a) Grid #1, (b) Grid #2, (c) Grid #3, and (d) Grid #4 (see Table 3 for geographical characteristics of
the grid cells). The solid and dotted lines denote the ensemble mean and range of the simulated
SWE, respectively.
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Figure 4. Correlations between the Noah-MP simulated SWE and SVM-based Brightness temperature
spectral difference (∆TB) 18 V–36 V estimates for Grid #3 (a: dry snow, b: wet snow), Grid #4 (c: dry
snow, d: wet snow), and glaciated regions (e,f) marked in Figure 2. A SWE threshold of 200 mm was
used for the slope reversal associated with signal saturation.

A process limitation of Noah-MP v3.6 used in this study is the lack of simulated glaciers. As a
result, no glacier information as simulated by the model was available for use by the SVM during
training. Consequently, physically inconsistent correlations between simulated SWE and SVM-derived
∆TB estimates were found in glaciated regions (Figure 4e,f). Namely, ∆TB decreased as SWE increased,
up until SWE reached a threshold of approximately 200 mm, after which ∆TB transitioned to a positive
correlation with SWE. This behavior is opposite to the relationship between SWE and ∆TB for a dry
snowpack on land (see Figure 4a,c for comparison) and was also seen in the relationship between the
simulated SWE and AMSR-E ∆TB data (not shown here). This implies that the SVM can yield the right
prediction of ∆TB from glaciated regions (i.e., snow on ice) for the wrong reasons (i.e., snow on land).
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On the other hand, one physical mechanism that can partly explain the unusual relationships
between SWE and ∆TB over snow on glaciers is microwave volume scattering within underlying
glaciers. The effective dielectric properties of solid ice are vastly different from those of water or
snow (i.e., ice + air) [84]. In addition, Grenfell [85] and Eppler et al. [86] showed that the microwave
emissivity of dry first-year ice at 37 GHz is comparable to that at 19 GHz, whereas the microwave
emissivity of dry multiyear ice at 19 GHz is much higher than that at 37 GHz due to increased volume
scattering, especially at higher frequencies, which is associated with the highly porous nature of
multiyear ice. During the early period of snow season, ∆TB between a lower frequency (e.g., 18.7 GHz)
and a higher frequency (e.g., 36.5 GHz) is mainly determined by the underlying glaciers, i.e., multiyear
ice. As snow depth increases, ∆TB is gradually affected by snow cover. However, without accurate
glacier information from observations or model simulations, it may be hard to fully understand the
underlying physical mechanisms that determine the relationships between SWE and ∆TB over snow
on glaciers.

The PMW TB signal at the top of the atmosphere is significantly affected by the presence of
vegetation canopy [87–89]. More specifically, a low sensitivity of PMW TB from terrestrial snow is
regularly observed in the presence of dense overlying forest [90,91]. Therefore, the performance
of PMW TB observation assimilation in estimating SWE can be impeded by the presence of forest
canopy [16]. Many studies (e.g., [17,65,91–93]) have applied correction techniques to try and ameliorate
the impact of forest cover on SWE estimation, but no such correction techniques have been applied here
as most of the snow-covered regions in the study domain are outside densely forested areas (Figure 2c).

However, these three issues (i.e., forest cover, TB signal saturation, and the electromagnetic
response of snow-on-ice) were not always the dominant factors yielding degraded results in this study.
The SVM-DA framework was effective in improving the SWE estimation for Grid #2 even though the
grid cell was characterized by high forest fraction (54.4%) and deep snow conditions. Conversely,
SWE estimates were degraded by DA for Grid #4 where neither forest cover nor glaciers exist. A
detailed analysis as to why such degradation occurs is provided in the next section.

As noted in our analysis below, careful attention to the three above mentioned issues must be
included in DA frameworks. In Section 3.3, it turned out that the TB signal saturation issue was one of
the major factors causing the degradation of SWE estimates by the SVM-DA framework for the entire
HMA domain. Due to the issue of the electromagnetic response of snow-on-ice, glaciated regions
were excluded from the analysis throughout this paper. Comparatively, the influence of forest cover
on the DA performance was small (also shown in Section 3.3), likely due to the fact that (1) the same
vegetation scheme was used in the synthetic truth and DA, and (2) no vegetation-related state variables
were used as inputs to the SVM. However, these issues are relevant for a successful application of the
SVM-DA framework for real TB or ∆TB data assimilation.

3.2. Limitations of ∆TB DA for Snow Estimation

As is seen in Figure 3c,d, the degradation of the SVM-DA framework in estimating SWE for Grids
#3 and #4 was mainly due to the anomalously large updates in SWE to the grid cells via assimilation
of synthetic ∆TB observations during 2005–2006 and 2009–2010, respectively. To better highlight the
underlying mechanisms that caused the degradation, we further analyzed the results of Grids #3 and
#4, focusing on these particular time periods. Time series of the SVM inputs, i.e., SWE, snow density,
snow liquid water, and snow (top layer) temperature for Grids #3 and #4 are presented in Figure 5
(time series for the entire 9-year experimental period are provided in the supplemental materials,
i.e., Figure S1 for Grid #3 and Figure S2 for Grid #4). For comparison purposes, the same plots were
made for Grids #1 and #2 for periods when the SVM-DA framework performed well (Figure 6).

It can be noted from Figure 5 that Grids #3 and #4, where DA degraded the SWE estimate,
conditions were characterized by deep, wet snow. Snow density using DA was improved relative
to the OL case, and the snow (top layer) temperature estimation error was marginal in both the
OL and DA cases. Although some ensemble members exhibited abnormally large snow densities
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(i.e., snow densities close to that of ice) during the snow ablation period as a result of DA (Figure 5b,f),
they were a direct consequence of the anomalously large updates to SWE during the snow accumulation
period. It is important to note here that SWE is a prognostic variable (in conjunction with snow depth)
and that snow density is a diagnostic variable computed as the ratio of the two. We can infer from
Figure 5c,g that the snow liquid water error is one of the dominant factors that lead to degraded SWE
estimates when using DA.

When wet snow is present in a pixel, microwave emission from the liquid water increases because
the emissivity of water approaches unity, hence, liquid water tends to dominate the snow “signal” in the
∆TB observations [64,68]. Therefore, the sensitivity of ∆TB to SWE decreases in wet snow as sensitivity
to liquid water correspondingly increases, as shown in Figure 4b. Although positive correlations
between Noah-MP simulated SWE and SVM-based ∆TB,18V–36V estimates were observed during deep
(SWE ≥ 200 mm threshold), wet snow conditions in Grid #4 (Figure 4d), we would not expect that the
∆TB signal is attributable to changes in SWE because of the occurrence of signal saturation in deep
snow (see Section 3.1).Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 29 
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temperature (d,h) including the synthetic truth (black dots), OL ensemble mean (blue line), and DA
ensemble mean (red line) for Grid #1 and Grid #2. The dotted lines denote the ensemble range of the
simulated snow states.

During the snow ablation period, large snow grains could be another determinant of the TB

signal emitted from the snowpack. The magnitude of the snow grain size error significantly affects the
correlation between SWE and TB [94], and hence, accurate estimation of snow grain size is a prerequisite
for enhancing the DA performance [16]. Other important snow microstructural parameters for accurate
modeling of snow microwave TB include snow anisotropy and stickiness (e.g., [94–96]). However,
because these microstructural parameters (i.e., snow grain size, anisotropy, and stickiness) are not
explicitly represented in Noah-MP, they could not be incorporated into the SVM training procedure.
Hence, the direct impacts of snow grain size, anisotropy, and stickiness on SVM-based ∆TB estimates
cannot be discussed here.

The large SWE update occurred (after the vertical dotted line in the figures) when the normalized
innovations (NI) were large (Figure 7e,j), which was calculated as:

NI =
y−H(x−)
√

HP−HT + R
(3)
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where the numerator is the difference (innovation) between the assimilated (synthetic) ∆TB observations
(y) and the ensemble mean of predicted (prior) ∆TB observations (H(x−)), and the denominator is the
square root of the sum of the measurement (R) and background error covariances (

√

HP−HT). Thus,
these large normalized innovations (compared to other time periods) may be attributed to (1) the large
innovations and/or (2) the small standard deviations of the prior ∆TB across the ensemble.
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During the ablation period in Grids #3 and #4, the temporal trend of the synthetic ∆TB retrievals
(Figure 7) was mainly attributed to snow liquid water content (Figure 5c,g respectively). As can be seen
in Figure 5c,g the SVM-DA framework could not reproduce the “true” liquid water content within the
snowpack, which led to the large differences (innovations) between the synthetic ∆TB observations
and the predicted ∆TB. Conversely, large innovations did not occur when the snowpack was dry
(Grid #1; Figure 6c) or when the snow liquid water content was well-estimated relative to the truth by
the SVM-DA framework (Grid #2; Figure 6g).

As clearly shown in Figure 7a–d, the SVM predicts climatological ∆TB when the prior estimates
of snow lie outside the range of the “true” snow values used during SVM training. Consequently,
the ensemble of SVM-based ∆TB predictions collapse, yielding a near-zero ensemble standard deviation.
The collapse of the predicted observation ensemble could result in the occurrence of spurious error
correlations between SWE and SVM-based ∆TB estimates that ultimately manifests itself as a degraded
estimate when DA is enabled.

3.3. Possible Improvements in DA Performance

Based on the analysis in Section 3.2, we incorporated two simple rule-based updates into the
SVM-DA framework to minimize DA degradation (Table 4). In the first rule (rule 1), prior SWE was
updated by the assimilation of the synthetic ∆TB observations only when the standard deviation of the
prior ∆TB was larger than 0.05 K. It was hypothesized that rule 1 can help avoid the negative effects
associated with the collapse of the SVM-predicted ∆TB ensembles, and the resultant spurious error
correlations between SWE and ∆TB on the DA performance.

Table 4. Descriptions of rule-based updates incorporated into the SVM-DA framework.

Applied Rule Description

Rule 1 Update SWE only when the standard deviation of the predicted ∆TB is larger
than 0.05 K

Rule 2 Add a thin layer (i.e., 5 mm SWE) when the observed ∆TB is greater than 5 K but
the simulated SWE is 0 mm.

Rule 3 Rule 1 + Rule 2

Rule 4 Rule 3 + Suppress the analysis update when SWE of one or more of the ensemble
members is greater than 500 mm.

As previously mentioned, the DA framework did not originally conduct an analysis update of the
prior SWE if one or more of the ensemble members in a given grid cell was snow-free. This could lead
to systematic underestimation of SWE during DA, and hence, underestimation of snow liquid water in
subsequent time periods. To help mitigate this concern, a second rule (rule 2) was introduced where it
was assumed that snow cover exists if the observed ∆TB is greater than 5 K, and hence, a thin snow
layer (i.e., 5 mm SWE) was added when the simulated SWE was zero but ∆TB > 5 K. Rule 2 is expected
to minimize abrupt changes in SWE during the analysis update caused by the snow liquid water error.
The combination of rule 1 and rule 2 (i.e., rule 3) was also explored.

Figure 8 shows that the performance of the SVM-DA framework in estimating SWE can be
improved slightly by applying the rule-based approaches. Rule 1, rule 2, and rule 3 all reduced the
SWE RMSE compared to the OL case by 4.2%, 7.5%, and 11.3%, respectively, for Grid #3, and by 2.9%,
12.8%, and 42.0%, respectively, for Grid #4. Estimates of snow density and snow liquid water were
also improved via the rule-based DA approach (see supplemental materials, i.e., Figure S1 for grid #3
and Figure S2 for grid #4). The large increase in SWE, shown in Figure 8a, was not observed when
using the rule-based DA cases in Grid #3 (Figure 8b–d). However, in Grid #4, a large amount of SWE
was added by DA during 2009 and 2010 winter in the rule 3 cases, which rapidly melted during the
ablation period.

The same rule-based approaches were also employed in the application of the SVM-DA framework
to the entire HMA domain (Figure 9). As shown in the figure, DA “baseline” slightly reduced the
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spatially averaged RMSE of SWE estimates (27.5 mm; Figure 9b) compared to that of the OL case
(28.1 mm; Figure 9a). SWE estimates in 56.8% (43.2%) of snow-covered grid cells were enhanced
(degraded) by DA, as shown in Figure 9c. Rule 1 further (but marginally) reduced the spatial mean of
the SWE RMSE (27.3 mm; Figure 9d,e), while rule 2 was effective in increasing the number of improved
grid cells (61.8%; Figure 9f,g). The best performance in terms of improvement to mean RMSE and
number of improved grid cells was achieved by applying rule 3 (combination of rule 1 and rule 2)
(Figure 9h,i).

Even with the rule-based approaches, the SVM-DA framework still exhibited mixed performance
in estimating SWE, that is, 61.6% (38.4%) of snow-covered grid cells were improved (degraded)
(Figure 9i). Therefore, the spatial mean RMSE was only marginally reduced by about 3.2% and
1.1% relative to the OL and DA (baseline) cases, respectively. The dominant land-cover types of
grid cells, where DA degraded SWE estimates, include open shrublands, grasslands, and barren or
sparsely vegetated areas (Figure 9j). Degradations of SWE estimates were mostly observed in deep
snow conditions (Figure 9l) rather than densely forested areas (Figure 9k). A simple test (i.e., rule
4; see Table 4 and Figure 9j,k) showed that reduction of the spatial mean RMSE (i.e., 26.3 mm) by
about 6.4% and 4.4% compared to the OL and DA (baseline) cases, respectively, can be achieved by
suppressing the analysis update when one or more of the ensemble members in a grid cell have SWE
greater than 500 mm. This implies that the TB signal saturation (especially at 36.5 GHz) in deep snow
still needs investigation in order to enhance the performance of the SVM-DA framework across the
entire HMA domain, even though it was not the primary factor for the degradation in the experimental
grid cells (i.e., Grids #3 and #4).

The percentage of deep snow days when SWE was greater than the reported SWE threshold
(i.e., 200 mm) during the winter season (December, January, and February) is shown in Figure 9k,l.
Due to the large uncertainties in precipitation data over the HMA region [42], both the results using
MERRA-2 (synthetic truth case) and TRMM (OL case) precipitation were analyzed. Within the study
domain, 6.3% (synthetic truth; Figure 9k) and 4.4% (OL; Figure 9l) of model grid cells experienced
deep snow conditions, and, on average, 21.7% (synthetic truth; Figure 9k) and 5.4% (OL; Figure 9l) of
the winter season were subject to the TB signal saturation issue. It should be noted that many locations
would experience TB signal saturation more frequently than the values shown in the figure because of
lower SWE thresholds.

Derksen [58] suggested that ∆TB between the 10.65 and 18.7 GHz channels can detect SWE
variations for relatively deep snow conditions, rather than using 36.5 GHz that most commonly
encounters signal saturation. The 10.65 GHz channels are less sensitive to snowpack volume scattering
compared to the 18.7 GHz channels. Therefore, for deep snow conditions (i.e., SWE > 100 to 200 mm
thresholds), the 10.65 GHz channels serve as a non-scattering background while the 18.7 GHz channels
are more significantly affected by volume scattering [58]. However, additionally assimilating ∆TB

between the 10.65 and 18.7 GHz (V and H) channels did not significantly improve DA performance
(mean RMSE = 27.1 mm). This is due, in part, to the fact that simultaneous assimilation of all channels
still involves errors stemming from higher frequency channels. Furthermore, ∆TB between the 10.65
and 18.7 GHz channels may introduce errors (noise) during shallow snow conditions because the signal
is more representative of soil moisture conditions rather than snow mass (e.g., [97]). A possible solution
will be assimilating different frequency channels for shallow and deep snow conditions. That is, for
example, ∆TB between the 18.7 and 36.5 GHz channels could be assimilated for shallow snow whereas
∆TB between the 10.65 and 18.7 GHz channels is assimilated for deep snow. This approach will be
explored in a future study.
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Figure 9. Maps of SWE RMSE for OL and DA cases (left column) and their differences
(RMSEDA−RMSEOL; middle column): (a) OL, (b,c) DA (baseline), (d,e) DA (rule 1), (f,g) DA (rule 2),
(h,i) DA (rule 3), and (j,k) DA (rule 4) (see Table 4 for descriptions of the rules applied). Negative
(blue color) and positive (red color) RMSE differences represent improvements and degradations in the
SWE estimates, respectively, as a result of invoking assimilation. Glaciated regions (gray color) were
excluded from the analysis. Maps of the (l) maximum SWE in the synthetic truth, (m) percentage of
deep snow days (SWE ≥ 200 mm) in the synthetic truth, and (n) percentage of deep snow days (SWE ≥
200 mm) in the OL case are presented for reference.

3.4. Controllability of Observation Operator

A final issue related to the efficacy of SVM-based assimilation of PMW ∆TB is that of
“controllability”, which is an important factor in optimal control theory. Controllability highlights the
skill (or lack thereof) of a linear or nonlinear model to guide the output of that model from any physically
plausible initial state (by changing the inputs, i.e., control variables) toward any physically plausible
final state within a finite period of time [98]. In other words, a system is controllable if and only if the
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system state(s) can be changed by changing the system input [99]. In the context of data assimilation,
controllability of the observation operator is crucial during the analysis update because any errors
in the geophysical (land surface) model should correlate back to errors in the SVM-derived ∆TB

estimates: this is one of the fundamental assumptions behind the SVM-DA framework. In the absence
of controllability, an error in the geophysical model would no longer correlate back to the corresponding
error in the observation operator, which would negate the efficacy of any data assimilation scheme,
and perhaps, even lead to spurious error correlations that ultimately degrade the geophysical model.

In the context of SVM-based estimation of PMW ∆TB over snow-covered terrain, Figure 10
shows two different locations in HMA, whereby one location in space and time is controllable and
hence shows improved SWE estimates by DA (RMSEDA–RMSEOL = −31 mm), and the other is not
(RMSEDA–RMSEOL = 5.8 mm). Namely, Figure 10a shows a controllable SVM-based estimate of ∆TB

whereby perturbations to the nominal inputs (i.e., control variables) to the SVM yields changes in
∆TB. Further, the ∆TB estimates adhere to the first-order physics, such that an increase (decrease) to
snow density or SWE results in an increase (decrease) of volume scattering that leads to an increase
(decrease) in ∆TB. Alternatively, the uncontrollable SVM in Figure 10b is insensitive to changes in
the inputs, and as such, reverts to a climatological ∆TB estimate gleaned during the training phase.
It is important to note that most of the SVM-based predictions in HMA are, in fact, controllable.
However, at some locations in space and/or time (particularly when the snow is deep and/or ripe),
individual SVMs may encounter controllability issues that ultimately manifest themselves as an
erroneous update. There is likely no single panacea that will solve this issue of controllability. Rather,
improvements in machine learning efficacy (and controllability by association) will be achieved through
a collection of actions including: (1) improvements in quality control and quality assurance of the
observations used during SVM training; this may include the use of the original enhanced resolution
(i.e., without upscaling) TB data or those corrected by considering the effect of complex topography
(e.g., slope, aspect, ridge, and valley) on the local incidence and polarization rotation [100] in order to
better represent microwave emission from the snowpack in mountainous areas; (2) improvements in
geophysical modeling (e.g., inclusion of snow grain size, inclusion of sub-grid scale glacier physics,
inclusion of snow grain shape) that will better constrain the PMW-derived snow mass estimation
problem; (3) reconciliation of differences between different meteorological boundary conditions that
will help better constrain the snow mass estimation problem; (4) continued exploration of different
machine learning algorithms, whereby one algorithm may possess greater skill in time series regression;
and (5) exploration of various training approaches, e.g., train machine learning algorithms using TB or
∆TB to retrieve SWE, which is then assimilated into LSMs, as explored for soil moisture estimates in
Rodríguez-Fernández et al. [101].
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4. Summary and Conclusions

This study explored the potential of assimilating synthetic PMW ∆TB observations within a
SVM-DA framework in order to enhance the characterization of spatio-temporal variability of SWE over
HMA. The SVM-DA framework employed a machine learning algorithm, i.e., SVM, as the observation
operator in the prediction of ∆TB. Noah-MP was employed as the prognostic LSM simulating snow.
Three different research questions were examined using a set of synthetic twin experiments in which
synthetic ∆TB observations at four different frequency and polarization combinations (i.e., ∆TB 10–36 H,
∆TB, 10–36 V, ∆TB, 18–36 H, and ∆TB, 18–36 V) were simultaneously assimilated into Noah-MP using
an EnKF.

Research question 1: Is the SVM-DA framework effective in improving snow mass estimates across
the HMA region? The framework significantly improved SWE estimates for two of the experimental
grid cells (Grids #1 and #2) but resulted in degraded output for the other two experimental grid cells
(Grids #3 and #4) that were characterized by deep and wet snow conditions. For the entire HMA
domain, the SVM-DA framework also showed mixed performance, that is, the framework improved
(degraded) SWE estimates for 56.8% (43.2%) of snow-covered grid cells. Compared to the OL case,
only ~2% improvement in the spatial mean RMSE of SWE was achieved with DA. These results suggest
that the use of machine learning algorithms to invert geophysical (snow) states into observational
(∆TB) space offers potential, but that issues related to sensitivity and controllability must be addressed
to ensure the machine learning algorithm produces the right answer for the right reason.

Research question 2: What limitations does the SVM-DA framework possess? From the analysis
of the results for the degraded experimental grid cells, two potential limitations of the TB assimilation
exist during deep snow and wet snow conditions. First, abrupt changes in SWE can happen during
the analysis update due to the large innovations when the ∆TB signal is dominated by variations
in snow liquid water content. Second, the collapse of the ensemble of SVM-based ∆TB predictions
are observed when the prior snow estimates are outside the range of snow inputs used for the SVM
training procedure. The resultant near-zero standard deviation across the ensemble of the prior ∆TB

leads to degradation of the DA performance, presumably due to spurious error correlations between
SWE and ∆TB. The former one is a general issue in PMW TB-based snow data assimilation, while the
latter one is the SVM-DA-specific issue. The issues highlighted here are, in part, related to problems of
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controllability mentioned above, but also stem from the ill-posed (underdetermined) nature of PMW
TB-based estimation of snow mass. One potential means of alleviating the ill-posed nature of this
problem is to provide additional constraints (e.g., snow grain size and snow grain shape) via additional
process physics in the forward (prognostic) land surface model.

Research question 3: Can these limitations be avoided through the recognition and appropriate
handling of instances where the SVM forward operator is suboptimal? To minimize the negative effects
of the potential pitfalls on the DA performance, three rules were tested. In rule 1, SWE assimilation
was enabled only when the standard deviation of the predicted ∆TB was greater than 0.05 K. In rule 2,
a thin snow layer (5 mm SWE) was added in a grid cell when the simulated SWE was zero but the
observed ∆TB was larger than 5 K. DA performance was improved for the experimental grid cells by
applying these rules. In particular, the combination of the two rules (rule 3) exhibited a 11.3% and 42.0%
reduction of the SWE RMSE for Grids #3 and #4, respectively, as compared to the OL case. However,
the SVM-DA framework still showed mixed performance for the entire HMA domain. DA (rule 3)
degraded SWE estimates for about 38.4% of snow-covered grid cells, which were largely impacted by
deep snow (signal saturation) conditions in the synthetic truth and less so by signal attenuation in
densely forested areas. Further improvements of the DA performance in the rule 4 DA case imply the
need for assimilating lower frequency channels (e.g., ∆TB between the 10.65 and 18.7 GHz channels) for
deep snow conditions (SWE > 100 to 200 mm thresholds) in order to avoid TB signal saturation issue.

In addition to the TB signal saturation, there are still a number of issues that need to be addressed
to enhance the applicability of the SVM-DA framework to the HMA domain. First, the effects of
glaciers and snow grain size, which are two important modulators of PMW TB, are not included in the
current framework. Second, a sophisticated forcing bias correction method should be explored for
future use. The simple bias correction method used in this study, i.e., applying a single bias correction
factor for all grid cells, may affect the performance of the data assimilation system, especially for areas
where the difference in precipitation between MERRA-2 and TRMM was large. Third, along with
the second issue, multiple meteorological forcing datasets can be simultaneously used for the SVM
training to, perhaps, better account for the large uncertainties in forcing data, especially precipitation,
over HMA, as shown in Yoon et al. [42]. This approach may help minimize the occurrence of the SVM
predicting climatological ∆TB when the prior snow estimates fall outside the range of the training
data. Fourth, assimilation needs to be conducted at a finer spatial resolution (e.g., 1 km) to better
characterize the spatial distribution of SWE in mountainous regions, which may require additional
strategies to consider the difference in spatial resolution between LSMs and TB observations (and SVM).
Additionally, the effects of vegetation and atmosphere on TB, which were neglected for simplicity in
this synthetic study, should be taken into account in future studies to improve the DA performance.
Finally, machine learning controllability (and sensitivity more generally) must be investigated prior to
assimilation to ensure the SVM produces the right answer for the right reason.

Overall, the results obtained in this study provide useful information for future practical
applications of the SVM-DA framework in HMA.
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Figure S1: Time series of SWE (A and E), snow density (B and F), snow liquid water (C and G), and snow (top
layer) temperature (D and H) including the synthetic truth (black dots), OL ensemble mean (blue line), and DA
ensemble mean (red line) for the baseline (upper) and rule 3 cases (lower) in Grid #3; Figure S2: Time series of
SWE (A and E), snow density (B and F), snow liquid water (C and G), and snow (top layer) temperature (D and H)
including the synthetic truth (black dots), OL ensemble mean (blue line), and DA ensemble mean (red line) for the
baseline (upper) and rule 3 cases (lower) in Grid #4.
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Abbreviations

AMSR-E Advanced Microwave Scanning Radiometer for Earth Observing System
ANN Artificial neural network
AR(1) First-order autoregressive model
CHIRPS-2 Climate Hazards Group InfraRed Precipitation with Station data, version 2
DA Data assimilation
ECMWF European Centre for Medium-Range Weather Forecasts
EnKF Ensemble Kalman filter
GLIMS Global Land Ice Measurements from Space
HMA High Mountain Asia
IGBP International Geosphere-Biosphere Program
IMS Interactive Multisensor Snow and Ice Mapping System
LIS Land Information System
LSM Land surface model
MEaSUREs Making Earth System Data Records for Use in Research Environments
MERRA-2 Modern-Era Retrospective analysis for Research and Applications, version 2
MODIS Terra Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration

NOAA/NESDIS
National Oceanic and Atmospheric Administration’s National Environmental Satellite
Data and Information Service

Noah-MP Noah Land Surface Model with multiparameterization options
NSC Normalized sensitivity coefficient
OL Open loop
PMW Passive microwave
RTM Radiative transfer model
SRTM Shuttle Radar Topography Mission
SVM Support vector machine
SWE Snow water equivalent
TB Brightness temperature
∆TB Brightness temperature spectral difference
TMPA Multisatellite precipitation analysis
TRMM Tropical Rainfall Measuring Mission
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